Introduction to Two-Variable Equations
Hello, Year 7! Today, we’re going to learn about two-variable equations. These are equations that involve two different variables, usually represented by letters like (x) and (y).
What is a Two-Variable Equation?
A two-variable equation looks like this:
$$
y = 2x + 3
$$
In this equation, (y) depends on (x). This means whenever we choose a value for (x), we can find a corresponding value for (y).
How to Find a Value
To find a value using a two-variable equation, follow these steps:
- Choose a value for one variable.
- Substitute that value into the equation.
- Calculate the value of the other variable.
Example
Let’s say we have the equation:
$$
y = 2x + 1
$$
- Choose a value for (x): Let’s pick (x = 2).
- Substitute into the equation:$$y = 2(2) + 1$$
- Calculate (y):$$y = 4 + 1 = 5$$
So, when (x = 2), (y = 5).
Key Rules
- Always substitute carefully.
- Perform the calculations step-by-step.
- You can pick any value for (x) or (y) to find the other.
Tips and Tricks
- Start with easy numbers like 0 or 1 to practice.
- Check your work by substituting back into the original equation.
- Remember that one equation can have many pairs of (x) and (y).
Practice Questions
Easy Level Questions
- If (y = 3x + 2), find (y) when (x = 1).
- If (y = 2x – 4), find (y) when (x = 0).
- If (y = x + 5), find (y) when (x = 3).
- If (y = 4x), find (y) when (x = 2).
- If (y = x – 1), find (y) when (x = 5).
- If (y = 2x + 3), find (y) when (x = 4).
- If (y = 5x), find (y) when (x = 1).
- If (y = x + 2), find (y) when (x = 0).
- If (y = 6x – 1), find (y) when (x = 2).
- If (y = 7 – x), find (y) when (x = 3).
- If (y = 3x + 1), find (y) when (x = 2).
- If (y = 4 – x), find (y) when (x = 2).
- If (y = 2x), find (y) when (x = 5).
- If (y = x + 3), find (y) when (x = 1).
- If (y = 10 – 2x), find (y) when (x = 4).
- If (y = 8x + 1), find (y) when (x = 0).
- If (y = x + 4), find (y) when (x = 2).
- If (y = 5 – x), find (y) when (x = 1).
- If (y = 3x – 5), find (y) when (x = 3).
- If (y = 2x + 2), find (y) when (x = 1).
Medium Level Questions
- If (y = 2x + 5), find (y) when (x = 3).
- If (y = 3x – 2), find (y) when (x = 4).
- If (y = 4 – 3x), find (y) when (x = 1).
- If (y = 5 + 2x), find (y) when (x = 2).
- If (y = 7x + 1), find (y) when (x = 0).
- If (y = 6 – 2x), find (y) when (x = 3).
- If (y = 4x + 4), find (y) when (x = 5).
- If (y = 3 – x), find (y) when (x = 2).
- If (y = 8x – 3), find (y) when (x = 1).
- If (y = x^2 + 2), find (y) when (x = 2).
- If (y = 2x^2 – 4), find (y) when (x = 2).
- If (y = 5 – x^2), find (y) when (x = 1).
- If (y = 10 + 3x), find (y) when (x = 0).
- If (y = 2 – 4x), find (y) when (x = 1).
- If (y = 1 + 5x), find (y) when (x = 3).
- If (y = x/2 + 5), find (y) when (x = 6).
- If (y = 9 – 2x), find (y) when (x = 4).
- If (y = 4 + 3x), find (y) when (x = 0).
- If (y = 7 – x^2), find (y) when (x = 3).
- If (y = 2x + 6), find (y) when (x = 5).
Hard Level Questions
- If (y = 3x^2 – 2x + 1), find (y) when (x = 2).
- If (y = 5 – x^2 + 3x), find (y) when (x = 1).
- If (y = 4x^2 – 3x + 2), find (y) when (x = 3).
- If (y = x^2 + 5x – 6), find (y) when (x = -1).
- If (y = 2x^2 + x + 4), find (y) when (x = 2).
- If (y = 3x^2 – 4x + 1), find (y) when (x = 1).
- If (y = 5x – x^2 + 4), find (y) when (x = 3).
- If (y = 6 – x^2 + 2x), find (y) when (x = 2).
- If (y = 2x + 3x^2 – 1), find (y) when (x = 1).
- If (y = 4x^2 + 3x – 2), find (y) when (x = -1).
- If (y = 7 – 2x^2 + 5x), find (y) when (x = 1).
- If (y = -x^2 + 6x – 5), find (y) when (x = 2).
- If (y = 3x^2 – 5x + 2), find (y) when (x = 3).
- If (y = 2 + 3x – 4x^2), find (y) when (x = 1).
- If (y = x^2 – 2x + 5), find (y) when (x = 3).
- If (y = 5x + x^2 – 3), find (y) when (x = 2).
- If (y = 4x – 3x^2), find (y) when (x = 1).
- If (y = 2x^2 + 3 – x), find (y) when (x = 4).
- If (y = -x^2 + 4x + 1), find (y) when (x = 5).
- If (y = x^2 – 1 + 3x), find (y) when (x = -2).
Answers and Explanations
Easy Level Answers
- (y = 3(1) + 2 = 3 + 2 = 5)
- (y = 2(0) – 4 = 0 – 4 = -4)
- (y = 3 + 5 = 8)
- (y = 4(2) = 8)
- (y = 5 – 1 = 4)
- (y = 2(4) + 3 = 8 + 3 = 11)
- (y = 5(1) = 5)
- (y = 0 + 2 = 2)
- (y = 6(2) – 1 = 12 – 1 = 11)
- (y = 7 – 3 = 4)
- (y = 3(2) + 1 = 6 + 1 = 7)
- (y = 4 – 2 = 2)
- (y = 2(5) = 10)
- (y = 1 + 3 = 4)
- (y = 10 – 8 = 2)
- (y = 8 + 1 = 9)
- (y = 5 – 1 = 4)
- (y = 2 + 3x = 2 + 12 = 14)
- (y = -9 + 20 + 1 = 12)
- (y = 2 + 3 = 5)
Medium Level Answers
- (y = 2(3) + 5 = 6 + 5 = 11)
- (y = 3(4) – 2 = 12 – 2 = 10)
- (y = 4 – 3(1) = 4 – 3 = 1)
- (y = 5 + 2(2) = 5 + 4 = 9)
- (y = 0 + 1 = 1)
- (y = 6 – 2(3) = 6 – 6 = 0)
- (y = 4(5) + 4 = 20 + 4 = 24)
- (y = 3 – 2 = 1)
- (y = 8(1) – 3 = 8 – 3 = 5)
- (y = 4 + 8 – 6 = 6)
- (y = 2(2)^2 – 4 = 8 – 4 = 4)
- (y = 5 – 1 = 4)
- (y = 10 + 0 = 10)
- (y = 1 – 4 = -3)
- (y = 1 + 15 = 16)
- (y = 3 – 12 + 2 = -7)
- (y = 4 + 0 = 4)
- (y = 4 + 3 = 7)
- (y = 7 – 9 = -2)
- (y = 10 + 12 = 22)
Hard Level Answers
- (y = 3(2)^2 – 2(2) + 1 = 12 – 4 + 1 = 9)
- (y = 5 – 1 + 3 = 7)
- (y = 4(3)^2 – 3(3) + 2 = 36 – 9 + 2 = 29)
- (y = 1 + 5 – 6 = 0)
- (y = 2(2)^2 + 2 + 4 = 8 + 2 + 4 = 14)
- (y = 3(1)^2 – 4(1) + 1 = 3 – 4 + 1 = 0)
- (y = 5(3) – (3^2) + 4 = 15 – 9 + 4 = 10)
- (y = 6 – 4 + 4 = 6)
- (y = 2(1) + 3(1)^2 – 1 = 2 + 3 – 1 = 4)
- (y = 4(-1)^2 + 3(-1) – 2 = 4 – 3 – 2 = -1)
- (y = 7 – 2(-1)^2 + 5(-1) = 7 – 2 – 5 = 0)
- (y = -(-2)^2 + 6(-2) – 5 = -4 – 12 – 5 = -21)
- (y = 3(3)^2 – 5(3) + 2 = 27 – 15 + 2 = 14)
- (y = 2 + 3(1) – 4(1)^2 = 2 + 3 – 4 = 1)
- (y = 9 – 6 + 5 = 8)
- (y = 4(1) – 3(1^2) = 4 – 3 = 1)
- (y = 2(4^2) + 3 – 4 = 32 + 3 – 4 = 31)
- (y = -2^2 + 4(-2) + 1 = -4 – 8 + 1 = -11)
- (y = -5^2 + 20 – 3 = -25 + 20 – 3 = -8)
- (y = (-2)^2 – 1 + 3(-2) = 4 – 1 – 6 = -3)
I hope this helps you understand how to find values using two-variable equations! Keep practicing, and you’ll get even better!