Introduction to Factors

Hello, Year 7! Today, we’re going to learn about factors of linear expressions. A linear expression is an expression that can be written in the form of ax + b

, where a
and b
are numbers, and x
is a variable.

What are Factors?

Factors are numbers or expressions that can be multiplied together to get another number or expression. For example, in the expression 6x

, the factors could be 2
, 3
, and x
because 2 \times 3 \times x = 6x
.

Why is Factoring Important?

Factoring helps us simplify expressions and solve equations. It’s like breaking down a big number or expression into smaller, more manageable parts. This is useful in solving problems and understanding how different parts of an expression work together.

Key Rules for Factoring Linear Expressions

  1. Look for Common Factors: Always check if there’s a number or variable that is common in all terms of the expression.Example: In the expression 4x + 8
    , the common factor is 4
    . Factoring it gives us 4(x + 2)
    .
  2. Use the Distributive Property: This property states that a(b + c) = ab + ac
    . You can use it to factor expressions back into a product.Example: If we have 3x + 6
    , we can factor out 3
    to get 3(x + 2)
    .
  3. Keep it Simple: Start with the simplest numbers first. Sometimes, just pulling out a common number can make things clearer.

Tips and Tricks

  • Practice Makes Perfect: The more you practice factoring, the better you will get at it! Try breaking down expressions into factors in different ways.
  • Draw it Out: Sometimes, a visual can help! Drawing a number line or using blocks can help you see how factors work.
  • Check Your Work: After factoring, you can always multiply your factors back together to see if you get the original expression.

Examples

  1. Example 1: Factor the expression 2x + 4
    .
    • Common factor is 2
      .
    • Factored form is 2(x + 2)
      .
  2. Example 2: Factor the expression 5x + 10
    .
    • Common factor is 5
      .
    • Factored form is 5(x + 2)
      .
  3. Example 3: Factor the expression 7x – 14
    .
    • Common factor is 7
      .
    • Factored form is 7(x – 2)
      .

Practice Questions

Easy Level Questions

  1. Factor 3x + 6
    .
  2. Factor 8y + 16
    .
  3. Factor 5a + 10
    .
  4. Factor 4x – 8
    .
  5. Factor 12y + 24
    .
  6. Factor 10x + 20
    .
  7. Factor 6x – 12
    .
  8. Factor 9a + 18
    .
  9. Factor 2x + 10
    .
  10. Factor 7b + 14
    .
  11. Factor 15m + 30
    .
  12. Factor 20y – 40
    .
  13. Factor 18x + 36
    .
  14. Factor 11n + 22
    .
  15. Factor 13p – 39
    .
  16. Factor 6k + 12
    .
  17. Factor 2x – 4
    .
  18. Factor 4y + 8
    .
  19. Factor 5x + 15
    .
  20. Factor 2a + 4
    .

Medium Level Questions

  1. Factor x^2 + 2x
    .
  2. Factor 3x^2 + 6x
    .
  3. Factor 2x^2 – 4x
    .
  4. Factor 4x^2 + 8x
    .
  5. Factor 5x^2 – 10x
    .
  6. Factor 6y^2 + 12y
    .
  7. Factor 8m^2 + 16m
    .
  8. Factor 9n^2 – 27n
    .
  9. Factor 7k^2 + 14k
    .
  10. Factor 2x^2 + 10x
    .
  11. Factor 4a^2 – 8a
    .
  12. Factor 3b^2 + 12b
    .
  13. Factor 5p^2 – 15p
    .
  14. Factor 6x^2 + 18x
    .
  15. Factor 10y^2 – 20y
    .
  16. Factor 2z^2 + 4z
    .
  17. Factor 8x^2 + 24x
    .
  18. Factor 15m^2 + 30m
    .
  19. Factor 12n^2 – 36n
    .
  20. Factor 14k^2 + 28k
    .

Hard Level Questions

  1. Factor x^2 + 5x + 6
    .
  2. Factor x^2 – 9
    .
  3. Factor x^2 – 5x + 6
    .
  4. Factor x^2 + 4x + 4
    .
  5. Factor x^2 + 6x + 8
    .
  6. Factor 2x^2 – 4x – 6
    .
  7. Factor 3x^2 + 12x + 12
    .
  8. Factor 4x^2 – 16
    .
  9. Factor x^2 – 4x – 12
    .
  10. Factor 2x^2 + 8x + 6
    .
  11. Factor 5x^2 + 15x – 10
    .
  12. Factor 4x^2 + 12x + 9
    .
  13. Factor 6x^2 – 9x
    .
  14. Factor x^2 + 7x + 10
    .
  15. Factor x^2 + 2x – 15
    .
  16. Factor x^2 – 6x + 8
    .
  17. Factor 3x^2 – 18
    .
  18. Factor x^2 – 2x – 15
    .
  19. Factor 2x^2 + 4x – 6
    .
  20. Factor x^2 + 3x – 10
    .

Answers

Easy Level Answers

  1. 3(x + 2)
    .
  2. 8(y + 2)
    .
  3. 5(a + 2)
    .
  4. 4(x – 2)
    .
  5. 12(y + 2)
    .
  6. 10(x + 2)
    .
  7. 6(x – 2)
    .
  8. 9(a + 2)
    .
  9. 2(x + 5)
    .
  10. 7(b + 2)
    .
  11. 15(m + 2)
    .
  12. 20(y – 2)
    .
  13. 18(x + 2)
    .
  14. 11(n + 2)
    .
  15. 13(p – 3)
    .
  16. 6(k + 2)
    .
  17. 2(x – 2)
    .
  18. 4(y + 2)
    .
  19. 5(x + 3)
    .
  20. 2(a + 2)
    .

Medium Level Answers

  1. x(x + 2)
    .
  2. 3x(x + 2)
    .
  3. 2x(x – 2)
    .
  4. 4x(x + 2)
    .
  5. 5x(x – 2)
    .
  6. 6y(y + 2)
    .
  7. 8m(m + 2)
    .
  8. 9n(n – 3)
    .
  9. 7k(k + 2)
    .
  10. 2x(x + 5)
    .
  11. 4a(a – 2)
    .
  12. 3b(b + 4)
    .
  13. 5p(p – 3)
    .
  14. 6x(x + 3)
    .
  15. 10y(y – 2)
    .
  16. 2z(z + 2)
    .
  17. 8x(x + 3)
    .
  18. 15m(m – 2)
    .
  19. 12n(n – 3)
    .
  20. 14k(k + 2)
    .

Hard Level Answers

  1. (x + 2)(x + 3)
    .
  2. (x – 3)(x + 3)
    .
  3. (x – 2)(x – 3)
    .
  4. (x + 2)(x + 2)
    .
  5. (x + 2)(x + 4)
    .
  6. 2(x – 3)(x + 1)
    .
  7. 3(x + 2)(x + 2)
    .
  8. (2x – 4)(2x + 4)
    .
  9. (x – 6)(x + 2)
    .
  10. 2(x + 3)(x + 1)
    .
  11. 5(x + 3)(x – 2)
    .
  12. (2x + 3)(2x + 3)
    .
  13. 3(x – 3)(x + 1)
    .
  14. (x – 5)(x + 2)
    .
  15. (x – 5)(x + 3)
    .
  16. (x – 5)(x + 3)
    .
  17. 3(x – 3)(x + 3)
    .
  18. (x – 5)(x + 3)
    .
  19. 2(x + 3)(x – 1)
    .
  20. (x + 5)(x – 2)
    .

Happy learning, Year 7! Keep practicing, and you’ll master the factors of linear expressions in no time!