Understanding Subtracting Fractions

Hello, Year 5! Today, we are going to learn how to subtract fractions. Don’t worry; it’s easier than it sounds!

What are Fractions?

A fraction shows a part of a whole. It has two numbers: the top number (numerator) and the bottom number (denominator). For example, in the fraction \frac{3}{4}, 3 is the numerator (how many parts we have), and 4 is the denominator (how many parts make a whole).

Subtracting Fractions with the Same Denominator

When the fractions have the same denominator, it’s quite simple! You just subtract the numerators and keep the same denominator.

For example:

\frac{5}{8} – \frac{2}{8}

  1. Subtract the numerators: 5 – 2 = 3
  2. Keep the same denominator: 8

So, \frac{5}{8} – \frac{2}{8} = \frac{3}{8}.

Subtracting Fractions with Different Denominators

When the fractions have different denominators, we need to make them the same first. This is called finding a common denominator.

Steps to Subtract Fractions with Different Denominators:

  1. Find a common denominator.
  2. Convert each fraction to an equivalent fraction with the common denominator.
  3. Subtract the numerators.
  4. Keep the common denominator.
  5. Simplify the fraction if possible.

Example:

Let’s subtract \frac{1}{4} – \frac{1}{6}.

  1. Find a common denominator: The common denominator for 4 and 6 is 12.
  2. Convert the fractions:
    • \frac{1}{4} = \frac{3}{12} (because 1 \times 3 = 3 and 4 \times 3 = 12)
    • \frac{1}{6} = \frac{2}{12} (because 1 \times 2 = 2 and 6 \times 2 = 12)
  3. Subtract the numerators: 3 – 2 = 1
  4. Keep the common denominator: So, we have \frac{1}{12}.

Key Rules

  • Same Denominator: Subtract numerators and keep the denominator.
  • Different Denominators: Find a common denominator, convert fractions, then subtract.
  • Always simplify your answer if you can!

Tips and Tricks

  • Remember to always look for the smallest common denominator to make calculations easier.
  • If you’re unsure, draw a picture to visually represent the fractions.
  • Practice regularly to get comfortable with different scenarios.

Practice Questions

Easy Level (1-20)

  1. \frac{3}{5} – \frac{1}{5}
  2. \frac{7}{10} – \frac{4}{10}
  3. \frac{5}{8} – \frac{2}{8}
  4. \frac{6}{9} – \frac{3}{9}
  5. \frac{1}{2} – \frac{1}{2}
  6. \frac{3}{4} – \frac{1}{4}
  7. \frac{4}{6} – \frac{2}{6}
  8. \frac{9}{12} – \frac{3}{12}
  9. \frac{5}{7} – \frac{2}{7}
  10. \frac{8}{15} – \frac{3}{15}
  11. \frac{2}{5} – \frac{1}{5}
  12. \frac{3}{6} – \frac{1}{6}
  13. \frac{7}{8} – \frac{3}{8}
  14. \frac{1}{3} – \frac{1}{3}
  15. \frac{4}{10} – \frac{3}{10}
  16. \frac{10}{20} – \frac{5}{20}
  17. \frac{4}{5} – \frac{2}{5}
  18. \frac{5}{9} – \frac{2}{9}
  19. \frac{6}{11} – \frac{2}{11}
  20. \frac{3}{12} – \frac{1}{12}

Medium Level (21-40)

  1. \frac{2}{3} – \frac{1}{6}
  2. \frac{5}{12} – \frac{1}{4}
  3. \frac{7}{10} – \frac{1}{5}
  4. \frac{4}{5} – \frac{1}{2}
  5. \frac{3}{8} – \frac{1}{4}
  6. \frac{5}{6} – \frac{1}{3}
  7. \frac{1}{2} – \frac{1}{8}
  8. \frac{3}{4} – \frac{1}{2}
  9. \frac{2}{5} – \frac{1}{10}
  10. \frac{3}{10} – \frac{1}{5}
  11. \frac{8}{15} – \frac{2}{15}
  12. \frac{5}{8} – \frac{1}{4}
  13. \frac{4}{9} – \frac{2}{9}
  14. \frac{7}{12} – \frac{1}{6}
  15. \frac{1}{4} – \frac{1}{8}
  16. \frac{5}{6} – \frac{1}{2}
  17. \frac{3}{5} – \frac{1}{10}
  18. \frac{9}{10} – \frac{1}{5}
  19. \frac{2}{3} – \frac{1}{9}
  20. \frac{4}{7} – \frac{2}{7}

Hard Level (41-60)

  1. \frac{5}{8} – \frac{1}{5}
  2. \frac{7}{10} – \frac{1}{4}
  3. \frac{11}{15} – \frac{2}{5}
  4. \frac{3}{4} – \frac{1}{3}
  5. \frac{8}{9} – \frac{2}{3}
  6. \frac{5}{12} – \frac{1}{6}
  7. \frac{2}{5} – \frac{1}{3}
  8. \frac{9}{10} – \frac{3}{5}
  9. \frac{4}{9} – \frac{1}{3}
  10. \frac{7}{8} – \frac{5}{12}
  11. \frac{1}{2} – \frac{2}{5}
  12. \frac{3}{5} – \frac{2}{15}
  13. \frac{11}{12} – \frac{1}{4}
  14. \frac{5}{6} – \frac{1}{2}
  15. \frac{7}{15} – \frac{1}{5}
  16. \frac{3}{8} – \frac{1}{6}
  17. \frac{5}{9} – \frac{1}{3}
  18. \frac{4}{5} – \frac{1}{2}
  19. \frac{8}{15} – \frac{2}{5}
  20. \frac{2}{3} – \frac{1}{4}

Answers and Explanations

Easy Level Answers

  1. \frac{2}{5}
  2. \frac{3}{10}
  3. \frac{3}{8}
  4. \frac{3}{9} (or \frac{1}{3})
  5. 0
  6. \frac{2}{4} (or \frac{1}{2})
  7. \frac{2}{6} (or \frac{1}{3})
  8. \frac{6}{12} (or \frac{1}{2})
  9. \frac{3}{7}
  10. \frac{5}{15} (or \frac{1}{3})
  11. \frac{1}{5}
  12. \frac{2}{6} (or \frac{1}{3})
  13. \frac{4}{8} (or \frac{1}{2})
  14. 0
  15. \frac{1}{10}
  16. \frac{5}{20} (or \frac{1}{4})
  17. \frac{2}{5}
  18. \frac{3}{9} (or \frac{1}{3})
  19. \frac{4}{11}
  20. \frac{2}{12} (or \frac{1}{6})

Medium Level Answers

  1. \frac{1}{2}
  2. \frac{1}{3}
  3. \frac{1}{2}
  4. \frac{3}{10}
  5. \frac{1}{8}
  6. \frac{1}{2}
  7. \frac{3}{8}
  8. \frac{1}{4}
  9. \frac{3}{10}
  10. \frac{1}{10}
  11. \frac{6}{15} (or \frac{2}{5})
  12. \frac{3}{8}
  13. \frac{2}{9}
  14. \frac{1}{4}
  15. \frac{1}{8}
  16. \frac{1}{3}
  17. \frac{5}{10} (or \frac{1}{2})
  18. \frac{8}{10} (or \frac{4}{5})
  19. \frac{5}{9}
  20. \frac{2}{7}

Hard Level Answers

  1. \frac{7}{40}
  2. \frac{9}{20}
  3. \frac{7}{15}
  4. \frac{5}{12}
  5. \frac{2}{9}
  6. \frac{1}{4}
  7. \frac{1}{15}
  8. \frac{1}{10}
  9. \frac{1}{9}
  10. \frac{1}{24}
  11. \frac{1}{10}
  12. \frac{7}{15}
  13. \frac{5}{12}
  14. \frac{1}{3}
  15. \frac{2}{15}
  16. \frac{7}{24}
  17. \frac{2}{9}
  18. \frac{1}{10}
  19. \frac{2}{15}
  20. \frac{5}{12}

Keep practicing, and soon you’ll be a pro at subtracting fractions! Remember to always check your work!