Introduction to Vectors
Hello, Year 11! Today, we’re going to learn about vectors, specifically how to find the magnitude of a vector when it’s multiplied by a scalar.
What is a Vector?
A vector is a quantity that has both direction and magnitude. For example, if you think about a car moving north at 60 km/h, both the speed (60 km/h) and the direction (north) together describe the vector.
What is a Scalar?
A scalar is just a number that can change the size of a vector without altering its direction. For example, if you multiply the car’s speed by 2, it would then be moving at 120 km/h in the same direction.
Finding the Magnitude of a Vector Scalar Multiple
Step-by-Step Explanation:
- Understand the Vector:A vector is often written in the form \mathbf{v} = (x, y)where (x) and (y) are the components in the horizontal and vertical directions, respectively.
- Scalar Multiplication:If we multiply a vector by a scalar (k), we write this as:k \cdot \mathbf{v} = (k \cdot x, k \cdot y)This means you multiply both components of the vector by (k).
- Magnitude of a Vector:The magnitude (or length) of a vector \mathbf{v}is found using the formula:|\mathbf{v}| = \sqrt{x^2 + y^2}
- Finding the Magnitude of a Scalar Multiple:If you have a scalar multiple of a vector, say k \cdot \mathbf{v}, the magnitude is given by:|k \cdot \mathbf{v}| = |k| \cdot |\mathbf{v}|This means you first find the magnitude of the original vector and then multiply it by the absolute value of the scalar.
Example:
- Suppose we have a vector \mathbf{v} = (3, 4).
- The magnitude of \mathbf{v}is:
- The magnitude of \mathbf{v}
- Now, if we multiply this vector by a scalar (k = 2):
- The new vector is:
- The magnitude of this new vector is:
Key Rules to Remember:
- Magnitude Formula: |\mathbf{v}| = \sqrt{x^2 + y^2}
- Scalar Multiplication: Multiply each component of the vector by the scalar.
- Magnitude of Scalar Multiple: |k \cdot \mathbf{v}| = |k| \cdot |\mathbf{v}|
Tips and Tricks:
- Always pay attention to the sign of the scalar. The magnitude is always positive, so use the absolute value.
- When finding the magnitude, remember to square the components first before adding.
- Practice with different vectors and scalars to build your confidence!
Questions
Easy Level Questions
- Find the magnitude of \mathbf{v} = (1, 2).
- Find the magnitude of \mathbf{v} = (3, 4).
- What is the magnitude of 2 \cdot \mathbf{v}if \mathbf{v} = (0, 5)?
- Find the magnitude of \mathbf{v} = (6, 8).
- What is the magnitude of -1 \cdot \mathbf{v}if \mathbf{v} = (3, 4)?
- Find the magnitude of \mathbf{v} = (5, 12).
- What is the magnitude of \mathbf{v} = (0, 0)?
- Find the magnitude of 3 \cdot \mathbf{v}if \mathbf{v} = (1, 1).
- Find the magnitude of \mathbf{v} = (2, 2).
- What is the magnitude of 4 \cdot \mathbf{v}if \mathbf{v} = (-3, -4)?
- Find the magnitude of \mathbf{v} = (7, 24).
- Find the magnitude of -3 \cdot \mathbf{v}if \mathbf{v} = (1, 3).
- What is the magnitude of \mathbf{v} = (8, 15)?
- Find the magnitude of \mathbf{v} = (4, 3).
- What is the magnitude of \mathbf{v} = (-2, -6)?
- Find the magnitude of \mathbf{v} = (10, 0).
- What is the magnitude of 3 \cdot \mathbf{v}if \mathbf{v} = (1, 2)?
- Find the magnitude of \mathbf{v} = (0, -9).
- What is the magnitude of 5 \cdot \mathbf{v}if \mathbf{v} = (2, 6)?
- Find the magnitude of \mathbf{v} = (9, 12).
Medium Level Questions
- Find the magnitude of \mathbf{v} = (2, 3), and then 2 \cdot \mathbf{v}.
- Calculate the magnitude of \mathbf{v} = (-4, 3).
- What is the magnitude of k \cdot \mathbf{v}if \mathbf{v} = (1, 1)and k = -3?
- Find the magnitude of \mathbf{v} = (6, 8)and then find the magnitude of 3 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (5, -12)?
- Find the magnitude of \mathbf{v} = (9, -40).
- Calculate the magnitude of 2 \cdot \mathbf{v}if \mathbf{v} = (-1, -1).
- What is the magnitude of \mathbf{v} = (-3, 4)?
- Find the magnitude of \mathbf{v} = (7, 1).
- What is the magnitude of \mathbf{v} = (0, 8)?
- Find the magnitude of 5 \cdot \mathbf{v}if \mathbf{v} = (-2, 2).
- What is the magnitude of \mathbf{v} = (3, 4)and 4 \cdot \mathbf{v}?
- Find the magnitude of \mathbf{v} = (1, -1).
- Calculate the magnitude of 3 \cdot \mathbf{v}if \mathbf{v} = (5, 2).
- What is the magnitude of \mathbf{v} = (-7, -24)?
- Find the magnitude of \mathbf{v} = (2, -2).
- What is the magnitude of \mathbf{v} = (10, 10)?
- Calculate the magnitude of k \cdot \mathbf{v}if \mathbf{v} = (3, 4)and k = 2.
- What is the magnitude of \mathbf{v} = (1, 0)?
- Find the magnitude of 4 \cdot \mathbf{v}if \mathbf{v} = (0, 6).
Hard Level Questions
- Calculate the magnitude of \mathbf{v} = (3, 4)and then find the magnitude of -2 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (8, 15)and k \cdot \mathbf{v}if k = 3?
- Find the magnitude of \mathbf{v} = (5, -12)and -3 \cdot \mathbf{v}.
- What is the magnitude of 2 \cdot \mathbf{v}if \mathbf{v} = (1, 1)and then find the magnitude of 3 \cdot \mathbf{v}.
- Calculate the magnitude of \mathbf{v} = (7, -24)and then find the magnitude of -1 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (10, 0)and k \cdot \mathbf{v}if k = -4?
- Find the magnitude of \mathbf{v} = (0, -9)and -5 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (1, 2)and k \cdot \mathbf{v}if k = 0?
- Calculate the magnitude of \mathbf{v} = (-6, 8)and 2 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (4, -3)and 3 \cdot \mathbf{v}?
- Find the magnitude of \mathbf{v} = (-5, -12)and 4 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (7, 24)and -3 \cdot \mathbf{v}?
- Calculate the magnitude of \mathbf{v} = (0, 8)and k \cdot \mathbf{v}if k = -2.
- What is the magnitude of \mathbf{v} = (10, 10)and -5 \cdot \mathbf{v}?
- Find the magnitude of \mathbf{v}(2, 2) and4 \cdot \mathbf{v}$$.
- Calculate the magnitude of 3 \cdot \mathbf{v}if \mathbf{v} = (1, -1)and k = -4.
- What is the magnitude of k \cdot \mathbf{v}if \mathbf{v} = (-3, 4)and k = 2?
- Find the magnitude of \mathbf{v} = (1, 1)and -3 \cdot \mathbf{v}.
- What is the magnitude of \mathbf{v} = (8, 15)and k \cdot \mathbf{v}if k = -1?
- Calculate the magnitude of \mathbf{v} = (12, -16)and 2 \cdot \mathbf{v}.
Answers
Easy Level Answers
- |\mathbf{v}| = \sqrt{1^2 + 2^2} = \sqrt{5}
- |\mathbf{v}| = \sqrt{3^2 + 4^2} = 5
- |2 \cdot \mathbf{v}| = 2 \cdot 5 = 10
- |\mathbf{v}| = \sqrt{6^2 + 8^2} = 10
- |-1 \cdot \mathbf{v}| = 5
- |\mathbf{v}| = \sqrt{5^2 + 12^2} = 13
- |\mathbf{v}| = 0
- |3 \cdot \mathbf{v}| = 3\sqrt{2}
- |\mathbf{v}| = \sqrt{2^2 + 2^2} = 2\sqrt{2}
- |4 \cdot \mathbf{v}| = 4 \cdot 5 = 20
- |\mathbf{v}| = 25
- |-3 \cdot \mathbf{v}| = 3\sqrt{10}
- |\mathbf{v}| = \sqrt{8^2 + 15^2} = 17
- |\mathbf{v}| = \sqrt{4^2 + 3^2} = 5
- |\mathbf{v}| = \sqrt{(-2)^2 + (-6)^2} = \sqrt{40} = 2\sqrt{10}
- |\mathbf{v}| = 10
- |3 \cdot \mathbf{v}| = 3\sqrt{5}
- |\mathbf{v}| = 9
- |5 \cdot \mathbf{v}| = 10\sqrt{2}
- |\mathbf{v}| = 15
Medium Level Answers
- |\mathbf{v}| = \sqrt{2^2 + 3^2} = \sqrt{13}; |2 \cdot \mathbf{v}| = 2\sqrt{13}
- |\mathbf{v}| = \sqrt{(-4)^2 + 3^2} = 5
- |k \cdot \mathbf{v}| = 3
- |\mathbf{v}| = 10; |3 \cdot \mathbf{v}| = 30
- |\mathbf{v}| = 13
- |\mathbf{v}| = \sqrt{9^2 + (-40)^2} = 41
- |2 \cdot \mathbf{v}| = 2\sqrt{2}
- |\mathbf{v}| = 5
- |\mathbf{v}| = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt{2}
- |\mathbf{v}| = 8
- |5 \cdot \mathbf{v}| = 10
- |3 \cdot \mathbf{v}| = 12
- |\mathbf{v}| = \sqrt{(-7)^2 + (-24)^2} = 25
- |\mathbf{v}| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}
- |\mathbf{v}| = 14.14
- |k \cdot \mathbf{v}| = 6
- |\mathbf{v}| = \sqrt{0^2 + 8^2} = 8
- |4 \cdot \mathbf{v}| = 40
- |\mathbf{v}| = 1
- |4 \cdot \mathbf{v}| = 24
Hard Level Answers
- |k \cdot \mathbf{v}| = 10
- |\mathbf{v}| = 17; |k \cdot \mathbf{v}| = 51
- |\mathbf{v}| = 13; |k \cdot \mathbf{v}| = 39
- |\mathbf{v}| = \sqrt{2}; |k \cdot \mathbf{v}| = 6
- |\mathbf{v}| = 25; |k \cdot \mathbf{v}| = 25
- |\mathbf{v}| = 10; |k \cdot \mathbf{v}| = 40
- |\mathbf{v}| = 9; |k \cdot \mathbf{v}| = 45
- |\mathbf{v}| = 2\sqrt{2}; |k \cdot \mathbf{v}| = 0
- |\mathbf{v}| = 50; |k \cdot \mathbf{v}| = 100
- |\mathbf{v}| = 5; |k \cdot \mathbf{v}| = 15
- |\mathbf{v}| = 13; |k \cdot \mathbf{v}| = 52
- |\mathbf{v}| = 25; |k \cdot \mathbf{v}| = 75
- |\mathbf{v}| = 8; |k \cdot \mathbf{v}| = 16
- |\mathbf{v}| = 14.14; |k \cdot \mathbf{v}| = 28.28
- |\mathbf{v}| = 10; |k \cdot \mathbf{v}| = 40
- |\mathbf{v}| = 2\sqrt{2}; $$|k \cdot \mathbf{v}| = 8\sqrt{2}