Indices, also known as powers or exponents, are a way of expressing repeated multiplication of the same number. They simplify expressions that involve multiplying a number by itself multiple times.

For example, instead of writing:

2 \times 2 \times 2 \times 2 = 16

We can write this more simply using indices:

2^4 = 16

Here, the number 2 is called the base and the number 4 is the index or power. The index tells you how many times to multiply the base by itself.

Key Concepts in Indices

1. Multiplying with the Same Base:

When multiplying two numbers with the same base, you add the indices.

a^m \times a^n = a^{m+n}

Example:
2^3 \times 2^2 = 2^{3+2} = 2^5

2. Dividing with the Same Base:

When dividing two numbers with the same base, you subtract the indices.

\frac{a^m}{a^n} = a^{m-n}

Example:
\frac{3^5}{3^2} = 3^{5-2} = 3^3

3. Raising a Power to Another Power:

When raising a power to another power, you multiply the indices.

(a^m)^n = a^{m \times n}

Example:
(4^2)^3 = 4^{2 \times 3} = 4^6

4. Zero as an Index:

Any non-zero number raised to the power of 0 is always 1.

a^0 = 1

Example:
5^0 = 1

5. Negative Indices:

A negative index indicates a reciprocal.

a^{-n} = \frac{1}{a^n}

Example:
3^{-2} = \frac{1}{3^2} = \frac{1}{9}


Practice Questions on Indices

Easy Level

  1. Simplify 2^3
  2. Simplify 5^2
  3. Simplify 4^3
  4. Simplify 10^2
  5. Simplify 3^3
  6. What is 7^0 ?
  7. Simplify 6^2
  8. What is 9^0 ?
  9. Simplify 2^4
  10. What is 8^0 ?
  11. Simplify 2^1
  12. What is 3^1 ?
  13. Simplify 1^4
  14. What is 5^0 ?
  15. Simplify 2 \times 2^3
  16. Simplify 4^2
  17. What is 10^0 ?
  18. Simplify 3^2
  19. Simplify 2^5
  20. Simplify 7^1

Medium Level

  1. Simplify 2^3 \times 2^2
  2. Simplify 3^4 \div 3^2
  3. Simplify (5^2)^3
  4. Simplify 4^3 \times 4^2
  5. Simplify \frac{6^5}{6^2}
  6. What is (2^4)^2 ?
  7. Simplify 3^2 \times 3^3
  8. Simplify \frac{9^4}{9^3}
  9. What is (5^3)^2 ?
  10. Simplify 7^4 \times 7^1
  11. Simplify \frac{8^5}{8^3}
  12. Simplify (4^2)^3
  13. Simplify 2^3 \times 2^4
  14. Simplify \frac{10^5}{10^3}
  15. Simplify (3^3)^2
  16. Simplify 6^4 \times 6^2
  17. Simplify \frac{7^6}{7^4}
  18. Simplify (2^5)^2
  19. Simplify 9^3 \div 9^2
  20. Simplify (5^2)^4

Hard Level

  1. Simplify (3^2)^4
  2. Simplify 5^3 \times 5^4
  3. Simplify \frac{4^6}{4^2}
  4. Simplify (2^3)^5
  5. Simplify \frac{9^6}{9^3}
  6. Simplify (5^4)^2
  7. Simplify 8^6 \div 8^4
  8. Simplify 7^5 \times 7^2
  9. Simplify (6^3)^4
  10. Simplify 3^4 \times 3^5
  11. Simplify (2^5)^3
  12. Simplify \frac{10^7}{10^4}
  13. Simplify (4^4)^2
  14. Simplify \frac{7^8}{7^3}
  15. Simplify (3^6)^2
  16. Simplify 9^4 \div 9^2
  17. Simplify \frac{12^6}{12^2}
  18. Simplify 11^3 \times 11^2
  19. Simplify (5^3)^4
  20. Simplify \frac{10^8}{10^5}

Answers and Explanations

Easy Level

  1. 2^3 = 8
  • 2 \times 2 \times 2 = 8
  1. 5^2 = 25
  • 5 \times 5 = 25
  1. 4^3 = 64
  • 4 \times 4 \times 4 = 64
  1. 10^2 = 100
  • 10 \times 10 = 100
  1. 3^3 = 27
  • 3 \times 3 \times 3 = 27
  1. 7^0 = 1
  • Any number raised to the power of 0 is 1.
  1. 6^2 = 36
  • 6 \times 6 = 36
  1. 9^0 = 1
  • Any number raised to the power of 0 is 1.
  1. 2^4 = 16
  • 2 \times 2 \times 2 \times 2 = 16
  1. 8^0 = 1
    • Any number raised to the power of 0 is 1.
  2. 2^1 = 2
    • Any number raised to the power of 1 is itself.
  3. 3^1 = 3
  4. 1^4 = 1
    • Any power of 1 is 1.
  5. 5^0 = 1
  6. 2 \times 2^3 = 2^4 = 16
  7. 4^2 = 16
  8. 10^0 = 1
  9. 3^2 = 9
  10. 2^5 = 32
  11. 7^1 = 7

Medium Level

  1. 2^3 \times 2^2 = 2^{3+2} = 2^5 = 32
  2. 3^4 \div 3^2 = 3^{4-2} = 3^2 = 9
  3. (5^2)^3 = 5^{2 \times 3} = 5^6 = 15625
  4. 4^3 \times 4^2 = 4^{3+2} = 4^5 = 1024
  5. \frac{6^5}{6^2} = 6^{5-2} = 6^3 = 216
  6. (2^4)^2 = 2^{4 \times 2} = 2^8 = 256
  7. 3^2 \times 3^3 = 3^{2+3} = 3^5 = 243
  8. $$ \frac{9^4}{9^3} = 9^{4-3} = 9^

1 = 9 $$

  1. (5^3)^2 = 5^{3 \times 2} = 5^6 = 15625
  2. 7^4 \times 7^1 = 7^{4+1} = 7^5 = 16807
  3. \frac{8^5}{8^3} = 8^{5-3} = 8^2 = 64
  4. (4^2)^3 = 4^{2 \times 3} = 4^6 = 4096
  5. 2^3 \times 2^4 = 2^{3+4} = 2^7 = 128
  6. \frac{10^5}{10^3} = 10^{5-3} = 10^2 = 100
  7. (3^3)^2 = 3^{3 \times 2} = 3^6 = 729
  8. 6^4 \times 6^2 = 6^{4+2} = 6^6 = 46656
  9. \frac{7^6}{7^4} = 7^{6-4} = 7^2 = 49
  10. (2^5)^2 = 2^{5 \times 2} = 2^{10} = 1024
  11. 9^3 \div 9^2 = 9^{3-2} = 9^1 = 9
  12. (5^2)^4 = 5^{2 \times 4} = 5^8 = 390625

Hard Level

  1. (3^2)^4 = 3^{2 \times 4} = 3^8 = 6561
  2. 5^3 \times 5^4 = 5^{3+4} = 5^7 = 78125
  3. \frac{4^6}{4^2} = 4^{6-2} = 4^4 = 256
  4. (2^3)^5 = 2^{3 \times 5} = 2^{15} = 32768
  5. \frac{9^6}{9^3} = 9^{6-3} = 9^3 = 729
  6. (5^4)^2 = 5^{4 \times 2} = 5^8 = 390625
  7. 8^6 \div 8^4 = 8^{6-4} = 8^2 = 64
  8. 7^5 \times 7^2 = 7^{5+2} = 7^7 = 823543
  9. (6^3)^4 = 6^{3 \times 4} = 6^{12} = 2176782336
  10. 3^4 \times 3^5 = 3^{4+5} = 3^9 = 19683
  11. (2^5)^3 = 2^{5 \times 3} = 2^{15} = 32768
  12. \frac{10^7}{10^4} = 10^{7-4} = 10^3 = 1000
  13. (4^4)^2 = 4^{4 \times 2} = 4^8 = 65536
  14. \frac{7^8}{7^3} = 7^{8-3} = 7^5 = 16807
  15. (3^6)^2 = 3^{6 \times 2} = 3^{12} = 531441
  16. 9^4 \div 9^2 = 9^{4-2} = 9^2 = 81
  17. \frac{12^6}{12^2} = 12^{6-2} = 12^4 = 20736
  18. 11^3 \times 11^2 = 11^{3+2} = 11^5 = 161051
  19. (5^3)^4 = 5^{3 \times 4} = 5^{12} = 244140625
  20. \frac{10^8}{10^5} = 10^{8-5} = 10^3 = 1000

This set of questions and answers covers a range of difficulties related to indices, helping students to understand and practice the key rules such as multiplication, division, and raising powers.