Binary numbers are a way of representing numbers using only two digits: 0 and 1. This system is also known as base-2, because it uses two digits, unlike our usual decimal (base-10) system, which uses ten digits (0 to 9). Binary numbers are fundamental to computing and digital systems, as computers operate using binary logic.
In the binary system, each place value represents a power of 2, starting from the rightmost digit. For example, the binary number 1011_2 can be understood as:
1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = 11_{10}
So, 1011_2 in binary equals 11_{10} in decimal.
Key Concepts in Binary Numbers
1. Binary Place Value
In the binary system, each digit (bit) represents a power of 2. The rightmost digit represents 2^0 (1), the next represents 2^1 (2), the next represents 2^2 (4), and so on. For example:
- Binary 1001_2 is:
- 1 \times 2^3 = 8
- 0 \times 2^2 = 0
- 0 \times 2^1 = 0
- 1 \times 2^0 = 1 Therefore, 1001_2 = 8 + 1 = 9_{10} in decimal.
2. Converting Binary to Decimal
To convert binary numbers to decimal, you multiply each binary digit by its corresponding power of 2 and sum the results.
For example:
1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13_{10}
3. Converting Decimal to Binary
To convert a decimal number to binary, you repeatedly divide the number by 2, keeping track of the remainders. The binary number is formed by the remainders read from bottom to top.
For example:
- Convert 18 to binary:
- 18 \div 2 = 9 \text{ remainder } 0
- 9 \div 2 = 4 \text{ remainder } 1
- 4 \div 2 = 2 \text{ remainder } 0
- 2 \div 2 = 1 \text{ remainder } 0
- 1 \div 2 = 0 \text{ remainder } 1 So, 18 in decimal is 10010_2 in binary.
Practice Questions on Binary Numbers
Easy Level
- Convert 101_2 to decimal.
- Convert 11_2 to decimal.
- Convert 1000_2 to decimal.
- Convert 110_2 to decimal.
- Convert 100_2 to decimal.
- Convert 10_2 to decimal.
- Convert 111_2 to decimal.
- Convert 1010_2 to decimal.
- Convert 1001_2 to decimal.
- Convert 1100_2 to decimal.
- Convert 9_{10} to binary.
- Convert 3_{10} to binary.
- Convert 5_{10} to binary.
- Convert 7_{10} to binary.
- Convert 8_{10} to binary.
- Convert 6_{10} to binary.
- Convert 10_{10} to binary.
- Convert 4_{10} to binary.
- Convert 2_{10} to binary.
- Convert 12_{10} to binary.
Medium Level
- Convert 1011_2 to decimal.
- Convert 1111_2 to decimal.
- Convert 10011_2 to decimal.
- Convert 11010_2 to decimal.
- Convert 10110_2 to decimal.
- Convert 1001_2 to decimal.
- Convert 11001_2 to decimal.
- Convert 10101_2 to decimal.
- Convert 11011_2 to decimal.
- Convert 11100_2 to decimal.
- Convert 17_{10} to binary.
- Convert 14_{10} to binary.
- Convert 20_{10} to binary.
- Convert 25_{10} to binary.
- Convert 23_{10} to binary.
- Convert 30_{10} to binary.
- Convert 18_{10} to binary.
- Convert 22_{10} to binary.
- Convert 19_{10} to binary.
- Convert 21_{10} to binary.
Hard Level
- Convert 100101_2 to decimal.
- Convert 110101_2 to decimal.
- Convert 111001_2 to decimal.
- Convert 101110_2 to decimal.
- Convert 110110_2 to decimal.
- Convert 101101_2 to decimal.
- Convert 111111_2 to decimal.
- Convert 100110_2 to decimal.
- Convert 101001_2 to decimal.
- Convert 111010_2 to decimal.
- Convert 42_{10} to binary.
- Convert 55_{10} to binary.
- Convert 63_{10} to binary.
- Convert 47_{10} to binary.
- Convert 58_{10} to binary.
- Convert 36_{10} to binary.
- Convert 52_{10} to binary.
- Convert 60_{10} to binary.
- Convert 65_{10} to binary.
- Convert 75_{10} to binary.
Answers and Explanations
Easy Level
- 101_2 = 5_{10}
- 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5
- 11_2 = 3_{10}
- 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3
- 1000_2 = 8_{10}
- 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 8
- 110_2 = 6_{10}
- 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 4 + 2 = 6
- 100_2 = 4_{10}
- 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 4
- 10_2 = 2_{10}
- 1 \times 2^1 + 0 \times 2^0 = 2
- 111_2 = 7_{10}
- 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 4 + 2 + 1 = 7
- 1010_2 = 10_{10}
- 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 8 + 0 + 2 = 10
- 1001_2 = 9_{10}
- 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 1 = 9
- 1100_2 = 12_{10}
- 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 8 + 4 = 12
- 9_{10} = 1001_2
- 3_{10} = 11_2
- 5_{10} = 101_2
- 7_{10} = 111_2
- 8_{10} = 1000_2
- $$6_{10} =
110_2$$
- 10_{10} = 1010_2
- 4_{10} = 100_2
- 2_{10} = 10_2
- 12_{10} = 1100_2
Medium Level
- 1011_2 = 11_{10}
- 1111_2 = 15_{10}
- 10011_2 = 19_{10}
- 11010_2 = 26_{10}
- 10110_2 = 22_{10}
- 1001_2 = 9_{10}
- 11001_2 = 25_{10}
- 10101_2 = 21_{10}
- 11011_2 = 27_{10}
- 11100_2 = 28_{10}
- 17_{10} = 10001_2
- 14_{10} = 1110_2
- 20_{10} = 10100_2
- 25_{10} = 11001_2
- 23_{10} = 10111_2
- 30_{10} = 11110_2
- 18_{10} = 10010_2
- 22_{10} = 10110_2
- 19_{10} = 10011_2
- 21_{10} = 10101_2
Hard Level
- 100101_2 = 37_{10}
- 110101_2 = 53_{10}
- 111001_2 = 57_{10}
- 101110_2 = 46_{10}
- 110110_2 = 54_{10}
- 101101_2 = 45_{10}
- 111111_2 = 63_{10}
- 100110_2 = 38_{10}
- 101001_2 = 41_{10}
- 111010_2 = 58_{10}
- 42_{10} = 101010_2
- 55_{10} = 110111_2
- 63_{10} = 111111_2
- 47_{10} = 101111_2
- 58_{10} = 111010_2
- 36_{10} = 100100_2
- 52_{10} = 110100_2
- 60_{10} = 111100_2
- 65_{10} = 1000001_2
- 75_{10} = 1001011_2
This set of questions and answers provides an understanding of how binary numbers work and how to convert between binary and decimal. It is tailored to the Key Stage 3 level, helping students build their understanding of the binary number system.