Introduction to Vectors

Hello, Year 11! Today, we’re going to learn about vectors, specifically how to find the magnitude of a vector when it’s multiplied by a scalar.

What is a Vector?

A vector is a quantity that has both direction and magnitude. For example, if you think about a car moving north at 60 km/h, both the speed (60 km/h) and the direction (north) together describe the vector.

What is a Scalar?

A scalar is just a number that can change the size of a vector without altering its direction. For example, if you multiply the car’s speed by 2, it would then be moving at 120 km/h in the same direction.

Finding the Magnitude of a Vector Scalar Multiple

Step-by-Step Explanation:

  1. Understand the Vector:A vector is often written in the form \mathbf{v} = (x, y) where (x) and (y) are the components in the horizontal and vertical directions, respectively.
  2. Scalar Multiplication:If we multiply a vector by a scalar (k), we write this as:k \cdot \mathbf{v} = (k \cdot x, k \cdot y)This means you multiply both components of the vector by (k).
  3. Magnitude of a Vector:The magnitude (or length) of a vector \mathbf{v} is found using the formula:|\mathbf{v}| = \sqrt{x^2 + y^2}
  4. Finding the Magnitude of a Scalar Multiple:If you have a scalar multiple of a vector, say k \cdot \mathbf{v}, the magnitude is given by:|k \cdot \mathbf{v}| = |k| \cdot |\mathbf{v}|This means you first find the magnitude of the original vector and then multiply it by the absolute value of the scalar.

Example:

  1. Suppose we have a vector \mathbf{v} = (3, 4).
    • The magnitude of \mathbf{v} is:
    |\mathbf{v}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
  2. Now, if we multiply this vector by a scalar (k = 2):
    • The new vector is:
    k \cdot \mathbf{v} = 2 \cdot (3, 4) = (6, 8)
    • The magnitude of this new vector is:
    |2 \cdot \mathbf{v}| = 2 \cdot |\mathbf{v}| = 2 \cdot 5 = 10

Key Rules to Remember:

  • Magnitude Formula: |\mathbf{v}| = \sqrt{x^2 + y^2}
  • Scalar Multiplication: Multiply each component of the vector by the scalar.
  • Magnitude of Scalar Multiple: |k \cdot \mathbf{v}| = |k| \cdot |\mathbf{v}|

Tips and Tricks:

  • Always pay attention to the sign of the scalar. The magnitude is always positive, so use the absolute value.
  • When finding the magnitude, remember to square the components first before adding.
  • Practice with different vectors and scalars to build your confidence!

Questions

Easy Level Questions

  1. Find the magnitude of \mathbf{v} = (1, 2).
  2. Find the magnitude of \mathbf{v} = (3, 4).
  3. What is the magnitude of 2 \cdot \mathbf{v} if \mathbf{v} = (0, 5)?
  4. Find the magnitude of \mathbf{v} = (6, 8).
  5. What is the magnitude of -1 \cdot \mathbf{v} if \mathbf{v} = (3, 4)?
  6. Find the magnitude of \mathbf{v} = (5, 12).
  7. What is the magnitude of \mathbf{v} = (0, 0)?
  8. Find the magnitude of 3 \cdot \mathbf{v} if \mathbf{v} = (1, 1).
  9. Find the magnitude of \mathbf{v} = (2, 2).
  10. What is the magnitude of 4 \cdot \mathbf{v} if \mathbf{v} = (-3, -4)?
  11. Find the magnitude of \mathbf{v} = (7, 24).
  12. Find the magnitude of -3 \cdot \mathbf{v} if \mathbf{v} = (1, 3).
  13. What is the magnitude of \mathbf{v} = (8, 15)?
  14. Find the magnitude of \mathbf{v} = (4, 3).
  15. What is the magnitude of \mathbf{v} = (-2, -6)?
  16. Find the magnitude of \mathbf{v} = (10, 0).
  17. What is the magnitude of 3 \cdot \mathbf{v} if \mathbf{v} = (1, 2)?
  18. Find the magnitude of \mathbf{v} = (0, -9).
  19. What is the magnitude of 5 \cdot \mathbf{v} if \mathbf{v} = (2, 6)?
  20. Find the magnitude of \mathbf{v} = (9, 12).

Medium Level Questions

  1. Find the magnitude of \mathbf{v} = (2, 3), and then 2 \cdot \mathbf{v}.
  2. Calculate the magnitude of \mathbf{v} = (-4, 3).
  3. What is the magnitude of k \cdot \mathbf{v} if \mathbf{v} = (1, 1) and k = -3?
  4. Find the magnitude of \mathbf{v} = (6, 8) and then find the magnitude of 3 \cdot \mathbf{v}.
  5. What is the magnitude of \mathbf{v} = (5, -12)?
  6. Find the magnitude of \mathbf{v} = (9, -40).
  7. Calculate the magnitude of 2 \cdot \mathbf{v} if \mathbf{v} = (-1, -1).
  8. What is the magnitude of \mathbf{v} = (-3, 4)?
  9. Find the magnitude of \mathbf{v} = (7, 1).
  10. What is the magnitude of \mathbf{v} = (0, 8)?
  11. Find the magnitude of 5 \cdot \mathbf{v} if \mathbf{v} = (-2, 2).
  12. What is the magnitude of \mathbf{v} = (3, 4) and 4 \cdot \mathbf{v}?
  13. Find the magnitude of \mathbf{v} = (1, -1).
  14. Calculate the magnitude of 3 \cdot \mathbf{v} if \mathbf{v} = (5, 2).
  15. What is the magnitude of \mathbf{v} = (-7, -24)?
  16. Find the magnitude of \mathbf{v} = (2, -2).
  17. What is the magnitude of \mathbf{v} = (10, 10)?
  18. Calculate the magnitude of k \cdot \mathbf{v} if \mathbf{v} = (3, 4) and k = 2.
  19. What is the magnitude of \mathbf{v} = (1, 0)?
  20. Find the magnitude of 4 \cdot \mathbf{v} if \mathbf{v} = (0, 6).

Hard Level Questions

  1. Calculate the magnitude of \mathbf{v} = (3, 4) and then find the magnitude of -2 \cdot \mathbf{v}.
  2. What is the magnitude of \mathbf{v} = (8, 15) and k \cdot \mathbf{v} if k = 3?
  3. Find the magnitude of \mathbf{v} = (5, -12) and -3 \cdot \mathbf{v}.
  4. What is the magnitude of 2 \cdot \mathbf{v} if \mathbf{v} = (1, 1) and then find the magnitude of 3 \cdot \mathbf{v}.
  5. Calculate the magnitude of \mathbf{v} = (7, -24) and then find the magnitude of -1 \cdot \mathbf{v}.
  6. What is the magnitude of \mathbf{v} = (10, 0) and k \cdot \mathbf{v} if k = -4?
  7. Find the magnitude of \mathbf{v} = (0, -9) and -5 \cdot \mathbf{v}.
  8. What is the magnitude of \mathbf{v} = (1, 2) and k \cdot \mathbf{v} if k = 0?
  9. Calculate the magnitude of \mathbf{v} = (-6, 8) and 2 \cdot \mathbf{v}.
  10. What is the magnitude of \mathbf{v} = (4, -3) and 3 \cdot \mathbf{v}?
  11. Find the magnitude of \mathbf{v} = (-5, -12) and 4 \cdot \mathbf{v}.
  12. What is the magnitude of \mathbf{v} = (7, 24) and -3 \cdot \mathbf{v}?
  13. Calculate the magnitude of \mathbf{v} = (0, 8) and k \cdot \mathbf{v} if k = -2.
  14. What is the magnitude of \mathbf{v} = (10, 10) and -5 \cdot \mathbf{v}?
  15. Find the magnitude of \mathbf{v}(2, 2) and 4 \cdot \mathbf{v}$$.
  16. Calculate the magnitude of 3 \cdot \mathbf{v} if \mathbf{v} = (1, -1) and k = -4.
  17. What is the magnitude of k \cdot \mathbf{v} if \mathbf{v} = (-3, 4) and k = 2?
  18. Find the magnitude of \mathbf{v} = (1, 1) and -3 \cdot \mathbf{v}.
  19. What is the magnitude of \mathbf{v} = (8, 15) and k \cdot \mathbf{v} if k = -1?
  20. Calculate the magnitude of \mathbf{v} = (12, -16) and 2 \cdot \mathbf{v}.

Answers

Easy Level Answers

  1. |\mathbf{v}| = \sqrt{1^2 + 2^2} = \sqrt{5}
  2. |\mathbf{v}| = \sqrt{3^2 + 4^2} = 5
  3. |2 \cdot \mathbf{v}| = 2 \cdot 5 = 10
  4. |\mathbf{v}| = \sqrt{6^2 + 8^2} = 10
  5. |-1 \cdot \mathbf{v}| = 5
  6. |\mathbf{v}| = \sqrt{5^2 + 12^2} = 13
  7. |\mathbf{v}| = 0
  8. |3 \cdot \mathbf{v}| = 3\sqrt{2}
  9. |\mathbf{v}| = \sqrt{2^2 + 2^2} = 2\sqrt{2}
  10. |4 \cdot \mathbf{v}| = 4 \cdot 5 = 20
  11. |\mathbf{v}| = 25
  12. |-3 \cdot \mathbf{v}| = 3\sqrt{10}
  13. |\mathbf{v}| = \sqrt{8^2 + 15^2} = 17
  14. |\mathbf{v}| = \sqrt{4^2 + 3^2} = 5
  15. |\mathbf{v}| = \sqrt{(-2)^2 + (-6)^2} = \sqrt{40} = 2\sqrt{10}
  16. |\mathbf{v}| = 10
  17. |3 \cdot \mathbf{v}| = 3\sqrt{5}
  18. |\mathbf{v}| = 9
  19. |5 \cdot \mathbf{v}| = 10\sqrt{2}
  20. |\mathbf{v}| = 15

Medium Level Answers

  1. |\mathbf{v}| = \sqrt{2^2 + 3^2} = \sqrt{13}; |2 \cdot \mathbf{v}| = 2\sqrt{13}
  2. |\mathbf{v}| = \sqrt{(-4)^2 + 3^2} = 5
  3. |k \cdot \mathbf{v}| = 3
  4. |\mathbf{v}| = 10; |3 \cdot \mathbf{v}| = 30
  5. |\mathbf{v}| = 13
  6. |\mathbf{v}| = \sqrt{9^2 + (-40)^2} = 41
  7. |2 \cdot \mathbf{v}| = 2\sqrt{2}
  8. |\mathbf{v}| = 5
  9. |\mathbf{v}| = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt{2}
  10. |\mathbf{v}| = 8
  11. |5 \cdot \mathbf{v}| = 10
  12. |3 \cdot \mathbf{v}| = 12
  13. |\mathbf{v}| = \sqrt{(-7)^2 + (-24)^2} = 25
  14. |\mathbf{v}| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}
  15. |\mathbf{v}| = 14.14
  16. |k \cdot \mathbf{v}| = 6
  17. |\mathbf{v}| = \sqrt{0^2 + 8^2} = 8
  18. |4 \cdot \mathbf{v}| = 40
  19. |\mathbf{v}| = 1
  20. |4 \cdot \mathbf{v}| = 24

Hard Level Answers

  1. |k \cdot \mathbf{v}| = 10
  2. |\mathbf{v}| = 17; |k \cdot \mathbf{v}| = 51
  3. |\mathbf{v}| = 13; |k \cdot \mathbf{v}| = 39
  4. |\mathbf{v}| = \sqrt{2}; |k \cdot \mathbf{v}| = 6
  5. |\mathbf{v}| = 25; |k \cdot \mathbf{v}| = 25
  6. |\mathbf{v}| = 10; |k \cdot \mathbf{v}| = 40
  7. |\mathbf{v}| = 9; |k \cdot \mathbf{v}| = 45
  8. |\mathbf{v}| = 2\sqrt{2}; |k \cdot \mathbf{v}| = 0
  9. |\mathbf{v}| = 50; |k \cdot \mathbf{v}| = 100
  10. |\mathbf{v}| = 5; |k \cdot \mathbf{v}| = 15
  11. |\mathbf{v}| = 13; |k \cdot \mathbf{v}| = 52
  12. |\mathbf{v}| = 25; |k \cdot \mathbf{v}| = 75
  13. |\mathbf{v}| = 8; |k \cdot \mathbf{v}| = 16
  14. |\mathbf{v}| = 14.14; |k \cdot \mathbf{v}| = 28.28
  15. |\mathbf{v}| = 10; |k \cdot \mathbf{v}| = 40
  16. |\mathbf{v}| = 2\sqrt{2}; $$|k \cdot \mathbf{v}| = 8\sqrt{2}